PUBLICATIONS 

 
 
 


 D. Vicente, An anisotropic Mumford-Shah model, 2015,  https://hal.archives-ouvertes.fr/hal-01132067v2

M. Bergounioux, Inf-convolution model for image processing : numerical experimentation, http://hal.archives-ouvertes.fr/hal-01077648/fr,   2015

 I. Abraham, R. Abraham, M. Bergounioux et G. Carlier, Tomographic reconstruction from a few views : a multi-marginal optimal transport approach, http://hal.archives-ouvertes.fr/hal-01065981/fr,  Applied Mathematics and Optimization 

 D. Vicente, Anisotropic Bimodal Energy for Segmentation of thin tubes and its approximation with  Γ-convergence, à paraitre, Advances in calculus of variations, 2015,  http://hal.archives-ouvertes.fr/hal-01006255

M. Bergounioux et D. Vicente, Parameter selection in a Mumford-Shah geometric model for the detection of thin structures, Acta Applicandae Mathematicae, 2014, http://hal.archives-ouvertes. fr/hal-00918723

M. Bergounioux, Mathematical analysis of a inf-convolution model for image processing, http://hal.archives-ouvertes.fr/hal-01002958/fr, Journal of Optimization Theory and Applications, 2015

M. Bergounioux, X. Bonnefond, T. Haberkorn et Y. Privat, An optimal control problem in photo-acoustic tomography, M3AS, Vol. 24, No. 12, pp. 2525-2548, http://hal.archives-ouvertes.fr/hal-00833867

M. Bergounioux, S. Même, L. Delsol, F.Szeremeta et J.-C. Beloeil, 3D Mumford-Shah segmentation of   mice brain area, 2013, http://hal.archives-ouvertes.fr/hal-00841421/fr

M. Bergounioux, Second order variational  models for image texture analysis, Advances in Imaging and Electron Physics,  Vol. 181, pp 35-124,  2014

 I. Abraham, R. Abrahm, M. Bergounioux, A variational method for tomographic reconstruction with few views, 2012,  http://hal.archives-ouvertes.fr/hal-00697218

M. P. Tran, R. Peteri et M. Bergounioux, Denoising 3D medical images using a second order variational model and wavelet shrinkage, ICIAR Conference 2012

M. Bergounioux et L. Piffet, A full second order model for multiscale texture analysis, Computational Optimization and Applications, 54, pp. 215-237, 2013

M. Bergounioux, On Poincaré-Wirtinger inequalities in BV - spaces,  Control & Cybernetics, n° 40, Vol 4. 2011

 M. Bergounioux et Minh Phuong Tran, Anisotropic second order model for 3D- texture extraction,  Mathematical Image Processing, Vol 5., pp. 41-57, Springer, 2011

 C. Louchet, L. Moisan, Total Variation as a local filter, SIAM paper, published in Volume 4, of SIAM Journal on Imaging Sciences, June 2011. web page with examples.

 M. Bergounioux et E. Trélat, A variational method using fractional Sobolev spaces for tomographic reconstruction of blurred and noised binary images, Journal of Functional Analysis, 259 (2010), 2296–2332. 

M. Bergounioux et L. Piffet, A second-order model for image denoising,  Set Valued and Variational Analysis , Vol. 18, 3-4, pp. 277-306

 M. Bergounioux et M. Haddou, A new relaxation method for a discrete image restoration problem, Journal of Convex Analysis , Volume 17, no 3,  pp. 421-435, 2010

M. Bergounioux et A. Srour, A relaxation approach for smooth tomographic reconstruction of binary axially symmetric objects, Pacific Journal of Optimization, Vol. 5, no 1, pp. 39-51, 2009

M. Bergounioux et L. Guillot, Existence and uniqueness results for the GVF-geodesic active contours model, Communications on Pure and Applied Analysis, Vol. 8 , no 4, pp. 1333-1349, 2009

A. Srour,  Nonlocal second-order geometric equations arising in tomographic reconstruction,  Nonlinear Anal.ysis  70  (2009),  no. 4, 1746--1762.

L. Guillot, E. Le Trong, O. Rozenbaum, M. Bergounioux et J.L. Rouet, A mixed model of active geodesic contours with gradient vector ows for X-ray microtomography segmentation, Actes de la Conférence “Mathématiques pour l’image”, PUO, pp. 69-88,  Avril 2009

I. Abraham, R. Abraham et M. Bergounioux, An Active Curve Approach for Tomographic Reconstruction of Binary Radially Symmetric Objects , Numerical Mathematics and Advanced Applications, Kunisch K. , Of G., Steinbac O. (Eds.), pp. 663-670, 2008

R. Abraham, M. Bergounioux et E. Trélat, A penalization approach for tomographic reconstruction of binary radially symmetric objects, Applied Mathematics and Optimization, Vol. 58, no. 3, pp. 345-371, 2008

A. Almdhie, C. Léger, M. Deriche, M. Bergounioux et R. Lédée, Improved VSF Algorithm of Smooth Surface Reconstruction from Sparse Medical Data, Journal of Computing and Information Technology - CIT 15, 2007, 2, 123-130.

I. Abraham, R. Abraham , A. Desolneux  et S. Li-Thiao-Te, Significant edges in the case of a non-stationnary Gaussian noise, Pattern Recognition 40, 3277-3291, 2007



  1. D. Vicente, An anisotropic Mumford-Shah model, 2015,  https://hal.archives-ouvertes.fr/hal-01132067v2


  1. M. Bergounioux, Inf-convolution model for image processing : numerical experimentation, http://hal.archives-ouvertes.fr/hal-01077648/fr,   2015


  1. I. Abraham, R. Abraham, M. Bergounioux et G. Carlier, Tomographic reconstruction from a few views : a multi-marginal optimal transport approach, http://hal.archives-ouvertes.fr/hal-01065981/fr,  Applied Mathematics and Optimization


  1. D. Vicente, Anisotropic Bimodal Energy for Segmentation of thin tubes and its approximation with  Γ-convergence, à paraitre, Advances in calculus of variations, 2015,  http://hal.archives-ouvertes.fr/hal-01006255


  1. M. Bergounioux et D. Vicente, Parameter selection in a Mumford-Shah geometric model for the detection of thin structures, Acta Applicandae Mathematicae, 2014, http://hal.archives-ouvertes. fr/hal-00918723


  1. M. Bergounioux, Mathematical analysis of a inf-convolution model for image processing, http://hal.archives-ouvertes.fr/hal-01002958/fr, Journal of Optimization Theory and Applications, 2015


  1. M. Bergounioux, X. Bonnefond, T. Haberkorn et Y. Privat, An optimal control problem in photo-acoustic tomography, M3AS, Vol. 24, No. 12, pp. 2525-2548, http://hal.archives-ouvertes.fr/hal-00833867


  1. M. Bergounioux, S. Même, L. Delsol, F.Szeremeta et J.-C. Beloeil, 3D Mumford-Shah segmentation of   mice brain area, 2013, http://hal.archives-ouvertes.fr/hal-00841421/fr


  1. M. Bergounioux, Second order variational  models for image texture analysis, Advances in Imaging and Electron Physics,  Vol. 181, pp 35-124,  2014


  1. I. Abraham, R. Abrahm, M. Bergounioux, A variational method for tomographic reconstruction with few views, 2012,  http://hal.archives-ouvertes.fr/hal-00697218


  1. M. P. Tran, R. Peteri et M. Bergounioux, Denoising 3D medical images using a second order variational model and wavelet shrinkage, ICIAR Conference 2012


  1. M. Bergounioux et L. Piffet, A full second order model for multiscale texture analysis, Computational Optimization and Applications, 54, pp. 215-237, 2013


  1. M. Bergounioux, On Poincaré-Wirtinger inequalities in BV - spaces,  Control & Cybernetics, n° 40, Vol 4. 2011


  1. M. Bergounioux et Minh Phuong Tran, Anisotropic second order model for 3D- texture extraction,  Mathematical Image Processing, Vol 5., pp. 41-57, Springer, 2011


  1. C. Louchet, L. Moisan, Total Variation as a local filter, SIAM paper, published in Volume 4, of SIAM Journal on Imaging Sciences, June 2011. web page with examples.


  1. M. Bergounioux et E. Trélat, A variational method using fractional Sobolev spaces for tomographic reconstruction of blurred and noised binary images, Journal of Functional Analysis, 259 (2010), 2296–2332.


  1. M. Bergounioux et L. Piffet, A second-order model for image denoising,  Set Valued and Variational Analysis , Vol. 18, 3-4, pp. 277-306


  1. M. Bergounioux et M. Haddou, A new relaxation method for a discrete image restoration problem, Journal of Convex Analysis , Volume 17, no 3,  pp. 421-435, 2010


  1. M. Bergounioux et A. Srour, A relaxation approach for smooth tomographic reconstruction of binary axially symmetric objects, Pacific Journal of Optimization, Vol. 5, no 1, pp. 39-51, 2009


  2. M. Bergounioux et L. Guillot, Existence and uniqueness results for the GVF-geodesic active contours model, Communications on Pure and Applied Analysis, Vol. 8 , no 4, pp. 1333-1349, 2009


  3. A. Srour,  Nonlocal second-order geometric equations arising in tomographic reconstruction,  Nonlinear Anal.ysis  70  (2009),  no. 4, 1746--1762.


  1. L. Guillot, E. Le Trong, O. Rozenbaum, M. Bergounioux et J.L. Rouet, A mixed model of active geodesic contours with gradient vector ows for X-ray microtomography segmentation, Actes de la Conférence “Mathématiques pour l’image”, PUO, pp. 69-88,  Avril 2009


  1. I. Abraham, R. Abraham et M. Bergounioux, An Active Curve Approach for Tomographic Reconstruction of Binary Radially Symmetric Objects , Numerical Mathematics and Advanced Applications, Kunisch K. , Of G., Steinbac O. (Eds.), pp. 663-670, 2008


  2. R. Abraham, M. Bergounioux et E. Trélat, A penalization approach for tomographic reconstruction of binary radially symmetric objects, Applied Mathematics and Optimization, Vol. 58, no. 3, pp. 345-371, 2008


  1. A. Almdhie, C. Léger, M. Deriche, M. Bergounioux et R. Lédée, Improved VSF Algorithm of Smooth Surface Reconstruction from Sparse Medical Data, Journal of Computing and Information Technology - CIT 15, 2007, 2, 123-130.


  2. I. Abraham, R. Abraham , A. Desolneux  et S. Li-Thiao-Te, Significant edges in the case of a non-stationnary Gaussian noise, Pattern Recognition 40, 3277-3291, 2007